ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-5736: Reconfigurable Computing

Summer I 2022

Unit 4- Pipelining and Uniolding

PIPELINING/UNFOLDING OF ITERATIVE ARCHITECTURES

MULTI-OPERAND ADDITION
= Addition of N n —bit numbers (signed, unsigned)

ITERATIVE DESIGN (FOLDED): ACCUMULATOR

= Even if we have all the data (N numbers) ready, we can only
feed one number at a time.

= We sign-extend (or zero-extend) the input D depending on
whether we are adding signed or unsigned numbers.

= This architecture takes N cycles to add N numbers. It must wait
one more cycle before loading the next batch of numbers.
= Computation time for T N-number groups: T x (N + 1) cycles.

= Note how the required number of bits grow to n + [log, N].

UNFOLDED ACCUMULATOR:

resetn

3
L u
S
- &
T O E/ X
= |+ e 7> 0
o)
N
Y
3 = -
-4 > 0
sign
extension Q=0 if E=sclr=1
E
sclr

= Unfolding: for each iteration, the architecture that computes that iteration is replicated. To add N numbers, we need to
apply N — 1 additions. For example, for N = 7, the unfolded version of the iterative architecture is shown below. It is called

‘Direct Unfolding’ architecture.

= Note that we can optimize this ‘Direct Unfolding’ architecture by using an Adder Tree.

= Adder Tree: Structure that optimizes the number of two-input adders.
v" Adder Levels: This is given by [log, N1]. A level is a set of adders whose inputs have the same bit-width.

v" Number of output bits: n + [log, N1].

v' If N is not a power of 2, some adder levels will have data inputs that are passed (sign-extended or zero-extended) to
the next adder level. Within an adder, we increase the number of bits depending on the representation:
= Signed numbers: at every level, we need to sign extend the operands, in order to get the proper result.
= Unsigned numbers: you can zero-extend the operands, or just use the carry out as the MSB of the result.

X(0 X(1) X2 XB) Xd) XE) X6)

n n n n . n. n
|
Tl+1’/
F
n+2//
-+ 7/
n+3k
+
n+%
DIRECT
UNFOLDING -+ 7
n+5//
-+ 7/
n+6
N=7 ’fn+N—1
Q

X0 X(1) X2 XB) XA X5 XE)
(O A A O S
=+ O+ 7+ /
n+1 n+1 n+1L n+1
A 7
n+ 2// n+ 2//
\ + /
N=7 n+3% n +[log, NI
0 Adder Tree
OPTIMIZATION
OF DIRECT
UNFOLDING

= This unfolded architecture can process a group of N numbers in one clock cycle at the expense of a large increase in
hardware resources. Computation time for T groups of N numbers: T cycles.
= Note that if you can only produce one number per clock cycle, the iterative architecture is the best option.

Even though data can be computed in clock cycle, the propagation delay is very large, and thus the clock cycle period will

be large. To increase the frequency of operation, we need to apply pipelining.

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing

Summer I 2022

PIPELINED DESIGN (UNFOLDED): ADDER TREE

Pipelining: Registers are inserted in between the architecture in order to increase the frequency of operation.

v" The number of register levels to include depends on the architecture.

v’ Initial Latency: Output data will be ready a number of cycles (= register levels) after input data is loaded.

v Note that we can load new input data at every new cycle. After the initial latency, we get output results every clock cycle.
Overtime, the initial latency can be considered negligible.

Adder Tree: [log, N] register levels (or
I/0 delay). This is the same as the Initial

latency.

Note: For N = 7, we do not omit a register
on the second register level when there is
no adder. This is called a synchronization
register and it makes sure that data
arrives at the correct time.
Computation time for T groups of N
numbers: T + [log, N] cycles.

Timing Comparison

An enable and a valid bit are added to the pipelined design.

This is done via a [log, N]-bit shift register.

resetn

X(0)

X(1)

X(2)

(@) "

ya

+ S 7
O
11 =
. > w6

sign
extension Q=0 if E=sclr=1

sclr

XA = |[XA(0) [XA(1) [XA(2) |XA(3) |XA(4) | XA (5) |XA(6) |

clock
I XA(Z;XXA(3): XA(4):XXA(5):XXA(6):X EXXB(O)?)(XB(1IKXB(2:$XXB(31:XXB(4):XXB(5) XA(6§f\ i
0 | | | | Xoa X o X | | | | X oB !
E " — s
T — [

D)(XA(O)XXA(l)

X

. X

‘4 Processling CycI:as:N /i /i i i Processling Cyclles:N i i /i

. T N O
x o om K xe X Yo XL L L
Y E :')(YAi)(YBIKYCID(YDb(IXYEID(YFE E E E E E E E E
SR 78 €9 S G513 G G- or S A S S N SR A
e T N Xes Koe Xleo X NemYer - ;¢ 00
B N T e e N e I O
' p : : v i ' | i | | i i i i i i

! Initial Latency:[log, K]

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing

Summer I 2022

MULTIPLICATION

UNSIGNED MULTIPLICATION
We already know the iterative version of the multiplier. Here, we show how to implement the multiplication using an array
multiplier. In this implementation, two rows are added up at each stage.
We start from the iterative version (Unit 2) of the multiplier. As in the case of the Accumulator, if we directly unfold the
iterative multiplier, the resulting architecture will not be optimal. Here we show an optimized architecture.

Unfolded version (purely combinational): Here, we have a different hardware for every summation of two rows.

out

a, a, a, a,x 0000 x o000 +
b, b, b, by 0000 09000
asby, a,b, a;b, agbg 0000 000000
asb; ayb; a;b; agb; 0000 :. [X] .\‘
asb, a,b, a;b, agb, - o -
b. ab. ab. ab 0000 0000000 +
azb; a,b; a,;05 ayb; —— -~ o o
090060 > 0000
p7 p6 p5 p4 p3 p2 pl pO
a; 0 as a, a; ag
PU | | | b,
Xo3 Yoz | Xo2 Yoz | Xo1 Yo | Xoo Yoo
b
PU PU PU PU «— 0 '
FA Cin Cos Co3 Co2 Coz Coo
I
l X13 /Y13 X2 /Y2 X1 Yir X0 Yio
b
PU PU PU PU «— O 2
Ci4 Ci3 C2 Ci1 Cio
X3 V23 lxzz Y22 lxn Y1 lxzo Y20
b
PU PU PU PU 3
Cos Cy3 Cn Ca &) 0
X33 Y33 lX32 Y32 l)(31 Y31 lX30 Y30 !
Py Pe Ps i< Ps3 P2 P1 Po

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

= Pipelined version: To increase frequency of operation, we place registers at every stage. Here, we are also including an
enable input and a valid output.

= Note the synchronization registers included to make sure that data arrives at the right time. This applied to the input bits
bs-bg and output bits p,, p1, po and py.

; T%@.ﬁww 5

03 QOlszlJ%loz Goz2 1901
3/ Vi3 Yi2 X1/ Y1

X12
PU PU

912 Q12 1911 11 {910 Q1o
@ @ @ 1]
X22 /Y22 Y21 X207 Y20

l?
L
(ﬁm(ﬁ
G_*LD
o
R
&
L
o]
o
3dis 2
poq - (]
5 8
=
e
S
LI
[
LI

Ci4
913 di3
V] ;
X3,/ Y23

X1
PU PU PU PU
Cos Cy3 Cxn Ca1 (_Czoo
? 23 Q$zz CIZI%Jﬂn Clzlijlﬁzo Q%I ?
v Py Pe Ps Py Ps o P Po
SIGNED MULTIPLICATION

= We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.

4 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

DiIVISION

= This is based on the iterative algorithm for dividers presented in Unit 2. The architecture was unfolded and then optimized.
RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS

= A, B: positive integers in unsigned representation. A = ay_jay_, ...ao With N bits, and B = by, _1by_, ... by With M bits, with
the condition that N > M. Q = quotient, R = residue. A= B X Q + R.
M bits
In this parallel implementation, the result of every stage is called)
the remainder R;. l l l Y

Stage0| | | || |

The figure depicts the parallel algorithm with N stages. For each

stage i, i =0,..,N — 1, we have: Rg
R;: output of stage i. Remainder after every stage. Y
Y;: input of stage i. It holds the minuend.

Stage 1 | | | | | |
For the next stage, we append the next bit of A to R;. This becomes R,
Y;+1 (the minuend): ll
Yis1 =Ri&ay_4_4i=0,..,N -1
Stage 2| | | | | |
At each stage i, the subtraction Y; — B is performed. If ¥; = B then R,
R, =Y, —B.IfY,<B, thenR, =Y. i
. # of Stage 3
Stage Y; Computation of R; R, bits | | | | | |
_ Ry=Y,—B,if ¥,=B
0 | Yo=av, Ry =Y if Yy <B 1 .
M-2
- R, =Y, —-B,ifY, 2B
1 Yy = Ro&ay_, R, =Y,,ifY; <B 2 i)
_ R,=Y,—-B,ifY,>B Stage M-1
> | tomeay, | RIBTEVE) [ITT.1]
M-1
Vo
_ — Ry =Yy —B,if Yy, =B
M-1 Yy_1 = Ry_&ay_y Ry_1 = Yy_1,if Yy_1 <B M Stage M| | | | | | |
Rl-l
Since B has M bits, the operation Y; — B requires M bits for both i‘
operands. To maintain consistency, we let Y; be represented with M y
bits. Stage M+1| | | | | | |
Ry
R;: output of each stage. For the first M stages, R; requires i + 1 ho
bits. However, for consistency and clarity’s sake, since R; might be (2 i l
the result of a subtraction, we let R; use M bits. stagem+2| | | [...] [|

For stages 0 to M —1: : :
R; is always transferred onto the next stage. Note that we transfer [l [lR\

R; with M — 1 least significant bits. There is no loss of accuracy here
since R; at most requires M — 1 bits for stage M — 2. We need R;

with M-1 bits since Y;,, uses M bits. Stage N-1 |

Stages M to N — 1:
Starting from stage M — 1, R; requires M bits. We also know that M+1 bits
the remainder requires at most M bits (maximum value is 2M — 2). Parallel implementation algorithm

So, starting from stage M-1 we need to transfer M bits.

As Y;,; now requires M + 1 bits, we need M + 1 units starting from stage M.

= To implement the operation Y; — B we use a subtractor. When Y; > B - cout; = 1, and when Y; < B — cout; = 0. This cout;
becomes a bit of the quotient: Q; = couty_,_;. This quotient Q requires N bits at most.

= Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is 2" — 2, thus the
remainder R requires M bits. R = Ry_;.

= Also, note that we should avoid a division by 0. If B = 0, then, in our circuit: Q = 2¥ — 1 and R = ay_;ay_; ...ag-

5 Instructor: Daniel Llamocca

| [[..
P

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing

Summer I 2022

COMBINATIONAL ARRAY DIVIDER (UNFOLDED)

The figure shows the hardware of this array divider for N=8, M=4. Note that the first M = 4 stages only require 4 units, while
the next stages require 5 units. This is fully combinatorial implementation.
= Each level computes R;. It first computes Y; — B. When ¥; > B - cout; = 1, and when Y; < B — cout; = 0. This cout; is used

to determine whether the next R; isY; — B or Y;.
= Each Processing Unit (PU) is used to process Y; — B one bit at a time, and to let a particular bit of either Y; — B or Y; be

transferred on to the next stage.

b3 0 b2 0 bl 0 bo aq
ixoz lxo2 lxﬂl l %00 b a
Co Co3 Cos Co c PU
a7 <1 3
a
Yo3 Yo2 Yo Yoo 6
%13 X12 X11 lxlo
Cigq (oh! Cio c Cig
Je L le—1 ¢
as
Y13 Y12 Y11 Yio
X323 X202 Xo1 lxzo cout «—{ FA cin
C24 C2 c C21 Coc
ds <1 l
Y23 Y22 2 Y20 as s ——\1 0/
X33 X32 X31 lX3o
C34 c C32 C31 C3o0 t
d4 C le— 1
0 Y33 Y32 Y31 Y30 a3
\ Xay %43 X42 Xa1 lxz;o
Cys c c C Cy Cyq
ds3 | U le— 1
a
Yy Ya3 Ya2 Ya1 Yo 2
Xs4 X53 X552 Xs51 lx5o
Css Cs c Cso Cs Cso
d2 L U le— 1
Y54 ¥s3 Ys2 Ys1 Y50 a1
Xe64 X63 X62 X61 ixm
Ces Ce4 c C Ce1 Cs0
M IN [eg] T U le— 1
a
Yea Ye3 Ye2 Ye1 Yeo 0
A_Ny | ARRAY L N/y o X74 %73 X72 X71 lxm
Cs C c C7o c Cyg
B—Ms 5 DIVIDER | M/, . qo<T— PV | pyu PU PU PU |«—1
Y74 Y73 Y72 Y71 lY'u
3 2 r Lo

Fully Combinatorial Array Divider architecture for N=8, M=4

FULLY PIPELINED ARRAY DIVIDER

The figure shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.

M IN
ANy A
B~ ARRAY N
F—— 5 DIVIDER |
resetn —>
clock —>D

Fully pipelined IP core for the array divider

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing

Summer I 2022

The figure shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only
require 4 units, while the next stages require 5 units. Note that the enable input 'E’ is only an input to the shift register on the
left, which is used to generate the valid output v. This way, valid outputs are readily signaled. If E='1’, the output result is
computed in N cycles (and v="1" after N cycles).

b, 0 b, 0 Db, 0 by ay a, aj ag
C\,Lq Cos Co2 Co1
Yos3 Yo2 Yo1 Yoo
1 l [Z'J] [Z'J] [Z'J:I 1 1 1
S s e
Yi3 Yi2 Y11
- l IZjEI [Z'j] 1 1 1
Cl/*» C23
Y23 Yy
Fi1rl [l l [Z'J] 1 []]
T
VEE
Fivril [l 1 0 [Z'j] 1 1 1
el
Yy
Fivril [l 1 1 ? 1 1
<
Yso
Fivril [l 1 1 M [Z]EI ? 1
Sl <
U T v RN o N v B s RO 4 IZ?I 7 o
lYﬂz lYH ly”o
d7 96 ds dy q3 SP Sl SK) I3 I] Lo
Fully Pipelined Array Divider architecture for N=8, M=4
SIGNED DIVISION

= We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.

7 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-5736: Reconfigurable Computing

Summer I 2022

SQUARE ROOT

= We use the optimized algorithm of Unit 4.

= Unfolding: every single iteration is implemented by a particular hardware. By observing the algorithm, we need n stages

with n adder/subtractors.

As in the case of the iterative circuitry, there is a reduction in this case as well for the first iteration:

Rln—l =dyn_1dn— — 01
1,ifR',_1 =0

= qno1 = don_1dan_2, b = dpp_1®dsp_5, a =dzn_;

d2n-1 d2n-2 R‘n-l = cha c1n-1

00 111 0
01 000 1
10 001 1
11 010 1

R',,_; requires n — (n — 1) + 1 = 2 bits, thus we only use
the last 2 LSBs of the result.

Also, since these are few logic gates on the first iteration,
we can embed the first and second stages into one
stage. Finally, we include registers levels at every stage.
We have n — 1 register stages.

In addition, you can always add a shift register for E and
V.

d2n-l

d2n-2

d2n-3d2n-4

o

o

V
(K]

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-5736: Reconfigurable Computing Summer I 2022

CORDIC

Here, we just need to implement every iteration as a different hardware architecture. The figure shows the circular CORDIC
for fixed point arithmetic.
Unfolding: This is a very straightforward operation: we just repeat each iteration of the iterative CORDIC architecture. No
optimization is applied. The output of each iteration becomes the input of the next iteration.
Pipelining: It consists of adding registers between stages. The initial latency is N cycles, where N is the number of CORDIC
iterations. We can feed new data (x,, yo, zo, mode) at every clock cycle. N cycles after the first operation, this circuit can
produce output data (xy, vy, zy) every clock cycle.

Xin Yin mode Zin E
16116 14] 164116 14] 16116 14]
i o 0—4e>Y
o
W 20120 18] 2020 18]
O v v N2
<] 1
nip > >
Xo Yo |MSB MSB Zy
L
12 . L0/ 16 Tani(29)
- di(0) l
v v di(0) v v \/ \
NE \\b a/ ¥ NG b
+/ +P— +- +/ +/- -Iy_
— 2 2 \ 2
W V] 1]
< b > >
0 Xy y1|msB Mse | 21
<
” 21 J 1 0/ 16 Tanl(2)
_ di(1) l
L2 v di(1) v v \/ v
N N
N \E, . 7 Z ? \ G- +/ %
v v v
20} 20} 16}
2 — : i
% > > >
< Xy Yn-1|MSB Zy_
|U_) N—-1 N 1. MSB N-1
T1oo(ND P ¢ 16y Tan'i(2-0+D)
di(N-1) l
v v di(N-1) v v \2
a +' b b v a a b
[+H- +/- 47_ +/- -Iy_
20 20 16
¢ [2018] Y v 7
> > >
16 16 16
xp|[16 14] Y16 14] 2 [16 14]
Xout Yout Zout v

9 Instructor: Daniel Llamocca

